Endothelial cell tolerance to hypoxia. Potential role of purine nucleotide phosphates.

نویسندگان

  • A V Tretyakov
  • H W Farber
چکیده

The ability of cells to tolerate hypoxia is critical to their survival, but varies greatly among different cell types. Despite alterations in many cellular responses during hypoxic exposure, pulmonary arterial endothelial cells (PAEC) retain their viability and cellular integrity. Under similar experimental conditions, other cell types, exemplified by renal tubular epithelial cells, are extremely hypoxia sensitive and are rapidly and irreversibly damaged. To investigate potential mechanisms by which PAEC maintain cellular and functional integrity under these conditions, we compared the turnover of adenine and guanine nucleotides in hypoxia tolerant PAEC and in hypoxia-sensitive renal tubular endothelial cells under various hypoxic conditions. Under several different hypoxic conditions, hypoxia-tolerant PAEC maintained or actually increased ATP levels and the percentage of these nucleotides found in the high energy phosphates, ATP and GTP. In contrast, in hypoxia-sensitive renal tubular endothelial cells, the same high energy phosphates were rapidly depleted. Yet, in both cell types, there were minor alterations in the uptake of the precusor nucleotide and its incorporation into the appropriate purine nucleotide phosphates and marked decreases in ATPase and GTPase activity. This maintenance of high energy phosphates in hypoxic PAEC suggests that there exists tight regulation of ATP and GTP turnover in these cells and that preservation of these nucleotides may contribute to the tolerance of PAEC to acute and chronic hypoxia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological role of adenosine and its receptors in tissue hypoxia-induced

It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...

متن کامل

Purine nucleosides: endogenous neuroprotectants in hypoxic brain

Even a short blockade of oxygen flow in brain may lead to the inhibition of oxidative phosphorylation and depletion of cellular ATP, which results in profound deficiencies in cellular function. Following ischemia, dying, injured, and hypoxic cells release soluble purine-nucleotide and -nucleoside pools. Growing evidence suggests that purine nucleosides might act as trophic factors in the CNS an...

متن کامل

Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzy...

متن کامل

Molecular Study of Vascular Endothelial Growth Factor Gene in Iranian Patients after Myocardial Infarction

Background: Stimulation of collateral artery growth (arteriogenesis) and/or capillary network growth (angiogenesis) would be beneficial to the patients with myocardial infarction. To understand the central role of vascular endothelial growth factor (VEGF) in biological angiogenesis, we performed molecular analysis of the VEGF gene in patients afflicted with acute myocardial infarction (AMI). Me...

متن کامل

Actions of Adenosine on Cullin Neddylation: Implications for Inflammatory Responses

There is intense interest in understanding how the purine nucleoside adenosine functions in health and during disease. In this review, we outline some of the evidence that implicates adenosine signaling as an important metabolic signature to promote inflammatory resolution. Studies derived from cultured cell systems, animal models and human patients have revealed that nucleotide metabolism is s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 95 2  شماره 

صفحات  -

تاریخ انتشار 1995